G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



    /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =



Momento magnético do eletrão[editar | editar código-fonte]

O momento (dipolar) magnético de um eletrão é:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /

 G =   

é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim,  é expresso e medido em unidades de pressão do S.I. (pascal).

onde  é o tensor eletromagnético e onde  é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.




A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /


 G =   

/

onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.



Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /

 G =   

/


,

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.




equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.

A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.

Detalhes[editar | editar código-fonte]

A equação de Pauli é mostrada como:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /

 G =   

/


Onde:

  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .

De forma mais precisa, a equação de Pauli é:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /

 G =   

/


Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes  de Pauli.




Equação dependente do tempo[editar | editar código-fonte]

Usando a notação de Dirac, o vetor de estados é dado, em um instante  por . A equação de Schrödinger dependente do tempo, então, escreve-se:[7]


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /

 G =   

Equação de Schrödinger Dependente do Tempo (geral)

/


Em que  é a unidade imaginária é a constante de Planck dividida por , e o Hamiltoniano  é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.

Comentários