G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
{ -1 / G* = / T] / c} =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI. ] é um
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
/ /
G* = = [ ] ω , , / T] / c [x,t] ] =
G =
G =
G =
G* = =
G=G = ω
G= G* = / T] / c}
= G [ ] ω , , / T] / c [ =
= G / /
G* = = [ ] ω , , / T] / c [x,t] ] =
G=
G=
= = G
= = G
Momento magnético do eletrão[editar | editar código-fonte]
O momento (dipolar) magnético de um eletrão é:
G =
G =
G =
G* = =
G=G = ω
G= G* = / T] / c}
= G [ ] ω , , / T] / c [ =
= G / /
G* = = [ ] ω , , / T] / c [x,t] ] =
G=
G=
= = G
= = / G
= G
é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim, é expresso e medido em unidades de pressão do S.I. (pascal).
onde é o tensor eletromagnético e onde é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.
A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).
O campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.
A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:
G =
G =
G =
G* = =
G=G = ω
G= G* = / T] / c}
= G [ ] ω , , / T] / c [ =
= G / /
G* = = [ ] ω , , / T] / c [x,t] ] =
G=
G=
= = G
= = / G
= G
onde e sua adjunta de Dirac são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
- ,
G =
G =
G =
G* = =
G=G = ω
G= G* = / T] / c}
= G [ ] ω , , / T] / c [ =
= G / /
G* = = [ ] ω , , / T] / c [x,t] ] =
G=
G=
= = G
= = / G
= G
/
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes[editar | editar código-fonte]
A equação de Pauli é mostrada como:
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
Equação dependente do tempo[editar | editar código-fonte]
Usando a notação de Dirac, o vetor de estados é dado, em um instante por . A equação de Schrödinger dependente do tempo, então, escreve-se:[7]
G* = =
G=G = ω
G= G* = / T] / c}
= G [ ] ω , , / T] / c [ =
= G / /
G* = = [ ] ω , , / T] / c [x,t] ] =
G=
G=
= = G
= = / G
= G
Equação de Schrödinger Dependente do Tempo (geral) /
Em que é a unidade imaginária, é a constante de Planck dividida por , e o Hamiltoniano é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.
Comentários
Postar um comentário